Stereoselective "Ene" Reaction of Allylsilanes with Amino Aldehydes. An Application to the Synthesis of Potential HIV-1 Protease Inhibitors

Fabiana D'Aniello, ${ }^{\dagger}$ André Mann, ${ }^{\ddagger}$ Duccio Mattii, ${ }^{\dagger}$ and Maurizio Taddei* ${ }^{*}$,
Dipartimento di Chimica Organica "Ugo Schiff", Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy, and Laboratoire de Pharmacochimie Moleculaire, Centre de Neurochimie, CNRS, 5, rue B. Pascal, 67084 Strasbourg Cedex, France

Received November 22, 1993^{8}

Abstract

2-Substituted 3 -(trimethylsilyl)-1-propenes react with N-Boc- α-amino aldehydes in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to give homoallylic alcohols, potential intermediates for the synthesis of hydroxyethylene peptide isosteres. The reaction gives a predominance of the syn products, but 2 -(chloromethyl)3 -(trimethylsilyl)-1-propene (5) exhibits a higher stereoselectivity with respect to other analogous allylsilanes. We hypothesize that this selectivity is due to an "ene" reaction followed by desilylation in the reaction medium ($\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CHCl}_{3}$). This reaction shows applicability to the synthesis of potential HIV-1 protease inhibitors. The preparation of compound 3, which has a structure related to the potent inhibitor L-682,679, is described.

The rapid spread of the acquired immunodeficiency syndrome (AIDS) epidemic has stimulated a world-wide search for therapeutic agents to stop the replication of the causative virus, human immunodeficiency virus (HIV). ${ }^{1}$ The efforts to elucidate the mechanism of HIV proliferation led to the identification of several specific viral targets. ${ }^{2}$ One promising possibility to interrupt the viral life cycle is the use of inhibitors of the virally encoded protease responsible for viral maturation. The HIV protease has been shown to belong to the class of aspartyl proteases that act at post integration steps of HIV replication. A number of paradigms have been developed for designing inhibitors of aspartyl proteases. These strategies generally involve the incorporation of a dipeptide isostere that resembles the tetrahedral intermediate for peptide bond hydrolysis. Peptide-based substrate analogues were the first inhibitors of protease reported to be active in vitro ${ }^{3}$ and were the first to enter clinical trials. The inserts used in place of the P_{1} and P_{1}^{\prime} residues of the substrate peptides include hydroxyethylene $\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}\right)$, hydroxyethylamine $(\mathrm{CH}(\mathrm{OH})$ $\mathrm{CH}_{2} \mathrm{~N}$), and dihydroxyethylene ($\mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH})$) moieties. ${ }^{4}$

We recently described the stereoselective synthesis of

[^0]the core of potent HIV-1 protease inhibitor 1 through the reaction between 2 -(chloromethyl)-3-(trimethylsilyl)-1propene and N-Boc-phenylalaninal. ${ }^{5}$ At the same time, a structure-activity study showed that compounds related to structure 2 have higher activity; ${ }^{6}$ interestingly, structures 1 and 2 differ only by a vinyl group. In our continuing effort to design and synthesize useful amino alcohols as potential inhibitors for the viral encoded protease, we decided to prepare compound 3, which could be also considered as a new building block for the synthesis of efficacious modified peptides acting as HIV-1 protease inhibitors.

The Lewis acid-mediated reaction of allylsilanes with aldehydes is a well-known procedure for the preparation of homoallylic alcohols. ${ }^{7}$ Protected α-amino aldehydes derived from α-amino acids have been used as electrophiles to prepare enantiomerically pure amino alcohol derivatives. ${ }^{5,8,9}$ The stereochemistry of this reaction is reported to follow Cram's rules and to give generally good levels of stereocontrol. 9,10
For these reasons we decided to follow the retrosynthetic analysis described in Scheme 2. This approach is versatile because allylsilanes with various substituents on the aromatic ring could be prepared from the corresponding substituted cinnamoyl ethyl esters and [(tri-

[^1]Scheme 1

Scheme 2

Scheme 3

methylsilyl)methyl]magnesium chloride in the presence of anhydrous CeCl_{3}. ${ }^{11}$

Allylsilane 4 was obtained by means of this procedure and was allowed to react with N-Boc-phenylalaninal (7) in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to give homoallylic alcohol 12 in 76% yield. As was immediately clear from the ${ }^{1} \mathrm{H}$ NMR of the crude product, a mixture of diastereoisomers was obtained in a 4:1 ratio in favor of the syn product (see below and Experimental Section). This result was rather disappointing because we had previously observed high diastereoselectivity in a similar reaction with 2 -(chlo-romethyl)-3-(trimethylsilyl)-1-propene (5), an allylsilane with a structure similar to that of $4 .{ }^{5}$

The differing diastereoselectivity observed with allylsilanes 4 and 5 could be linked to the steric bulk of the substituents attached to the double bond and/or to the

[^2]Scheme 4

Scheme 6

coordination to the Lewis acid. ${ }^{12}$ Therefore, we decided to examine the stereochemistry of the products obtained from allylsilanes 4-6 with different N-Boc-amino aldehydes 7-10 in the presence of Lewis acids. Results of this screening are reported in Schemes 4-6.
The ratios between the diastereomers described in Schemes 4-6 were determined from the ${ }^{1} \mathrm{H}$ NMR spectra of the crude products by integration of the NH signals, which always differed by $0.2-0.4 \mathrm{ppm}$, and the ratios were confirmed (when possible) with the integration of other well-separated signals. Products 12-23 were further purified by column chromatography on silica gel and fully characterized. The syn/anti stereochemistry was determined on the corresponding oxazolidinones 24 35 by comparison of the coupling constants J_{4-5} with those reported in the literature (see supplementary material). ${ }^{13}$
A comparative analysis of the stereochemistry of the products was also performed on representative products 12, 15, 16a, 16b, 20a, and 20b. They were transformed

[^3]
into the (R)- and the (S)-MTPA esters (Scheme 8) in order to verify the enantiomeric integrity of the products and to assign the absolute stereochemistry of the newly formed stereogenic centers (see the δ values in the supplementary material). ${ }^{14}$

We also investigated the influence of the solvent and the Lewis acid on the diastereoisomeric ratio of the products obtained. We observed that the combination $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} / \mathrm{CHCl}_{3}$ gave the best results in terms of chemical yields and diastereomeric excesses. Only aldehydes 8 and 10 gave the expected products (namely, products 21 and 22) when allowed to react with allylsilane 6 in the presence of TiCl_{4} or SnCl_{4} at $-63{ }^{\circ} \mathrm{C}$ in CHCl_{3} or at $-78^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; but the yields ranged from 10 to 35%, and the stereoselectivity was improved only modestly with respect to that of the reaction performed in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

The diastereomeric composition of the product mixture was influenced by the nature of the substituent on the allylsilane. The rank order observed was $5>4>6$, and the diastereomeric composition was independent of the nature of the R group of the amino aldehyde. Nevertheless, only reaction with allylsilane 5 gave a high level of stereoselectivity, giving the syn product (S, S). According to the models proposed for the transition state of the reaction between allylsilanes and aldehydes (antiperiplanar or synclinal), ${ }^{7}$ the substituents on the double bond are far away from the reacting center and should not influence the selectivity.

On the basis of all the above considerations, another proposal could be put forward to account for the difference observed between allylsilane 5 and the two others (4 and 6). We hypothesize that allylsilane 5 reacts through a different mechanism, an "ene" mechanism, to give an intermediate substituted allylsilane (43 or 44 in Scheme 9), which can be further desilylated (in situ) by $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ in CHCl_{3} to give the final product.

To gain experimental support for this hypothesis, we tried to detect the assumed intermediate (43 or 44) through analysis of the reaction mixture via gas chromatography/mass spectroscopy. However, when the reaction was carried out in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ we

[^4]Scheme 9

Scheme 10

were not able to detect these products. On the other hand, when the reaction of aldehyde 7 or 8 with allylsilane 5 was carried out using SnCl_{4} as the Lewis acid and was quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ at $-60{ }^{\circ} \mathrm{C}$, we isolated product 43 or 44 in $20-30 \%$ yield. Treatment of these allylsilanes with TBAF in THF afforded products 12 and 13, which were identical to the products obtained through the $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$-mediated reaction. This experiment could confirm our assumption that allylsilane 5 reacts through an ene mechanism. The high level of stereoselectivity obtained in this reaction could be interpreted as reflecting the preference of the chlorine for an equatorial position in model A, shown in Scheme 10. ${ }^{15}$

2-(Chloromethyl)-3-trimethylsilyl)-1-propene (5) is more inclined to react with activated aldehydes as an electronrich olefin. In this case, 5 stereoselectively gives the product coming from an "ene" reaction. This intermediate allylsilane is desilylated directly in the reaction mixture to give the homoallylic alcohol. The other allylsilanes employed in this work (4 and 6), structurally similar to 5 , react by the "normal" mechanism of nucleophilic displacement of the silicon via an acyclic transition state and give the same kind of final products but with lower stereoselectivity.

On the basis of those results, we decided to modify the planned strategy to prepare diene 3 using the more stereoselective reagent 5 instead of allylsilane 4. First we transformed 12 into phosphonate 47 and attempted to perform an Emmons-Horner reaction with benzaldehyde. After protection of the NH and OH groups of 12 as the dimethyloxazolidine and transformation of chloride 45 into iodide 46, reaction with triethyl phosphite at 140 ${ }^{\circ} \mathrm{C}$ for 2 h followed by removal of iodoethane and the excess of triethylphosphite under vacuum gave phosphonate 47. Unfortunately, several attempts to generate the ylide from compound 47 were unsuccessful (we tried $\mathrm{NaH} / \mathrm{THF}, \mathrm{LDA} / \mathrm{THF}, \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} /$ toluene, DBU/ $\mathrm{LiCl} / \mathrm{THF}$), generally giving unchanged starting materials and several byproducts.

We decided to invert the sequence in the carboncarbon double bond formation. Therefore, allylic chloride

[^5]

Scheme 12

45 was transformed into α, β-unsaturated aldehyde 48 by means of the Kornblum oxidation (DMSO and NaHCO_{3} at $90{ }^{\circ} \mathrm{C}$ for 12 h). ${ }^{16}$ Reaction of 48 with diethyl benzylphosphonate in the presence of NaH gave product 50, which was isolated by column chromatography on silica gel in 67% yield. Product 50 was a single isomer by HPLC analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum suggested the formation of the E isomer, but the assignment of this stereochemistry was not verified until a later step of the synthesis.

Oxidative hydroboration with $\mathrm{BH}_{3} \cdot \mathrm{THF}$ selectively gave primary alcohol 51 as a mixture of diastereomers (51a and 51b in a $55: 45$ ratio). The use of the more hindered dicyclohexylborane gave excellent results in terms of stereoselectivity, giving product 51a in 60% yield with a de of 80%. At this stage we were not able to establish the configuration of the newly formed stereogenic center. Nevertheless, we carried out the synthesis on the major isomer (51a), purified by column chromatography, postponing the determination of its structure until a later step.

Alcohol 51a was oxidized to aldehyde 52 by means of the typical Swern oxidation conditions and then oxidized to acid 53 with $\mathrm{NaClO}_{2} / 2$-methyl-2-propene. This twostep procedure gave better results than direct oxidation of the alcohol with the Jones reagent. Oxazolidinone 53a was transformed into N-Boc-amino alcohol 54a with $\mathrm{BF}_{3} \cdot \mathrm{CH}_{3} \mathrm{COOH}$ in MeOH . Product 54a cyclized to lactone 55a with triflic anhydride and pyridine at $-30^{\circ} \mathrm{C}$. The structure of lactone 55 a was determined by comparison of the NOE spectrum with that of lactone 55b. Product 55a did not show any NOE effect between the protons in positions 3 and 5 of the lactone, whereas in the spectrum of product $\mathbf{5 5 b}$ there was a significant NOE (about 10%) between the same protons. This result is consistent with trans relationship in the lactone ring for the major isomer 55a. The trans stereochemistry of the double bond was determined by the value of the $J_{(\text {trans })}$ $(17 \mathrm{~Hz})$ shown after selective decoupling on the proton in position 3 of the lactone.

[^6]

Scheme 14

Scheme 15

Product 3 was prepared from acid 53a. Condensation of 53a with $1(S)$-amino-2(R)-hydroxyindan ${ }^{18}$ (56) (diethyl phosphorocyanidate, diisopropylethylamine) gave amide 56, which was deprotected to give product 3. When submitted to the HIV-1 protease inhibition tests, 3 gave an $\mathrm{IC}_{50}=1.2 \mathrm{nM}$; this value was determined via a peptide hydrolysis assay. This result was encouraging when compared with the result obtained with product $2,{ }^{6}$ and the activity may be improved by variation of the substituents on the phenyl ring or the introduction of this frame into a more complex peptidic sequence.

Experimental Section

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were obtained at 200 and 50 MHz , respectively, in CDCl_{3}. Mass spectra were recorded on a lowresolution instrument in the electron-impact mode (EI) at 70 eV. Air- and/or moisture-sensitive reactions were conducted

[^7] 32, 540 .

Table 1. Spectroscopic Characterization of Products 12-23

product	${ }^{1} \mathrm{H}$ NMR	${ }^{13} \mathrm{C}$ NMR	MS (m/z)
12	$\begin{gathered} 1.40(\mathrm{~s}, 9 \mathrm{H}), 2.2(\mathrm{~b}, 1 \mathrm{H}, \mathrm{OH}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), \\ 3.8(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~m}, 2 \mathrm{H}), 4.8(\mathrm{bd}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), \\ 5.25(\mathrm{~m}, 1 \mathrm{H}), 7.2(\mathrm{~m}, 5 \mathrm{H}) \end{gathered}$	28.8, 37.6, 37.9, 48.2, 56.4, 69.0, 79.9, 118.6, $126.9,128.3,129.9,138.6,142.1,155.6$	$\begin{gathered} 340\left(\mathrm{M}^{+}\right), 304,248 \\ 192,120,91,57 \end{gathered}$
13	$0.92(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.3-1.7(\mathrm{bm}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$, $2.15(\mathrm{bd}, 1 \mathrm{H}), 2.3$ (AB part of a ABX system, 2 H), $3.6(\mathrm{~m}, 1 \mathrm{H}), 3.7$ (m, 1H), 4.09 (s-like, 2 H), 4.6 (bd, $1 \mathrm{H}, \mathrm{NH}$), 5.09 (s-like, 1 H), 5.26 (s-like, 1 H)	$22.6,23.7,25.3,28.8,39.0,42.0,48.7,52.9$, 72.1, 79.8, 118.5, 142.6, 158.6	$\begin{aligned} & 305\left(\mathrm{M}^{+}\right), 250,186 \\ & \quad 130,86,57 \end{aligned}$
14	$0.9(\mathrm{~m}, 6 \mathrm{H}), 1.2(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.6(\mathrm{~m}, 2 \mathrm{H}), 2.1(\mathrm{bd}$, 1 H), 2.3 (m, 2H), 3.3 (m, 1H), 3.9 (m, 1H), 4.1 (s-like, $2 \mathrm{H}), 4.75$ (bd, 1H), 5.1 (s-like, 1H), 5.3 (s-like, 1H)	$\begin{aligned} & 14.6,18.6,26.2,28.0,39.1,40.1,48.6,58.6, \\ & 69.7,79.7,188.7,143.6,158.0 \end{aligned}$	$295\left(\mathrm{M}^{+}\right), 238,233,57$
15	$1.20(\mathrm{~d}, 3 \mathrm{H}), 1.41$ ($\mathrm{s}, 9 \mathrm{H}$), 2.3 (8 lines, AB part of an ABX system, 2 H), 2.5 (bd, 1H), 3.6 (m, 2H), 4.05 (s-like, 2 H), 4.65 (bd, 1H), 5.05 (s-like, 1H), 5.26 (s-like, 1H)	$\begin{aligned} & 19.0,28.7,38.9,48.7,50.1,73.2,79.8, \\ & 118.6,142.4,156.2 \end{aligned}$	$\begin{aligned} & 263\left(\mathrm{M}^{+}\right), 196,171 \\ & \quad 166,57 \end{aligned}$
16a	$1.4(\mathrm{~s}, 9 \mathrm{H}), 2.1(\mathrm{bs}, 1 \mathrm{H}), 2.5(\mathrm{~m}, 2 \mathrm{H}), 2.9(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~m}$, 2 H), 4.9 (bs, 1H), 5.21 (s-like, 1H), 5.32 (s-like, 1H), 6.6 (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}$), 6.82 (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.3(\mathrm{~m}, 5 \mathrm{H})$	28.6, 37.9, 38.9, 54.5, 69.0, 79.6, 118.8, 128.5, 128.6, 129.2, 129.8, 129.9, 13.8, 138.4, 142.3, 156.9	393 (M^{+}), 378, 337, 322, 293, 246, 129, 115, 91, 57
16b	$1.4(\mathrm{~s}, 9 \mathrm{H}), 2.1(\mathrm{bs}, 1 \mathrm{H}), 2.5(\mathrm{~m}, 2 \mathrm{H}), 2.9(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~m}$, 2 H), 4.5 (bs, 1H), 5.31 (s-like, 1H), 5.41 (s-like, 1H), 6.6 (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.3(\mathrm{~m}, 5 \mathrm{H})$	28.6, 37.9, 38.9, 56.5, 72.2, 79.6, 118.8, 128.5, 128.6, 129.2, 129.8, 129.9, 13.8, 138.4, 142.3, 156.9	393 (\mathbf{M}^{+}), 378, 337, 322, 293, 246, 129, 115, 91, 57
17	$0.89(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.2-1.7(\mathrm{bm}, 3 \mathrm{H}), 1.4(\mathrm{~s}, 9 \mathrm{H}), 2.2$ (bd, 1H), 2.5 (m, 2H), 3.7 (m, 2H), 4.8 (bd, 1H), 5.2 (s-like, 1H), 5.4 (s-like, 1H), 6.6 (d, $J=17 \mathrm{~Hz}$), 6.8 (d, $J=17 \mathrm{~Hz}), 7.3(\mathrm{~m}, 5 \mathrm{H})$	25.7, 27.9, 28.4, 39.2, 39.7, 50.5, 70.1, 79.9, $118.6,129.9,128.5,129.2,136.8,138.4$, 142.2, 156.7	$\begin{aligned} & 359\left(\mathrm{M}^{+}\right), 302,225,207, \\ & 91,57 \end{aligned}$
18	$0.9(\mathrm{~m}, 6 \mathrm{H}), 1.3(\mathrm{~m}, 1 \mathrm{H}), 1.4(\mathrm{~s}, 9 \mathrm{H}), 1.6(\mathrm{~m}, 2 \mathrm{H}), 2.2(\mathrm{bd}$, $1 \mathrm{H}), 2.4(\mathrm{~m}, 2 \mathrm{H}), 3.7(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~m}, 1 \mathrm{H}), 4.7(\mathrm{bd}, 1 \mathrm{H})$, 5.2 (s-like, 1H), 5.5 (s-like, 1H), 6.6 (d, $J=16 \mathrm{~Hz}$), 6.8 (d, $J=16 \mathrm{~Hz}$), 7.3 (m, 5H)	$15.1,18.9,26.6,28.4,30.2,39.8,58.6,70.2$, 79.6, 118.9, 128.5, 129.2, 129.8, 136.4, 137.8, 142.4, 154.9	$\begin{aligned} & 359\left(\mathrm{M}^{+}\right), 302,225,207 \\ & 91,57 \end{aligned}$
19	$1.25(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 2.4(\mathrm{~m}, 2 \mathrm{H}), 2.5(\mathrm{bd}$, $1 \mathrm{H}), 3.6$ (m, 2H), 4.7 (bd, 1H), 5.2 (s-like, 1H), 5.5 (s-like, $1 \mathrm{H}), 6.6(\mathrm{~d}, J=16 \mathrm{~Hz}), 6.8(\mathrm{~d}, J=16 \mathrm{~Hz}), 7.3(\mathrm{~m}, 5 \mathrm{H})$	18.0, 27.6, 28.9, 31.0, 39.8, 58.9, 71.0, 79.6, $118.9,128.5,129.2,129.8,136.4,137.8$, $142.4,154.9$	$\begin{aligned} & 317\left(\mathrm{M}^{+}\right), 280,245,227, \\ & 91,57 \end{aligned}$
20a	$1.1(\mathrm{~m}, 3 \mathrm{H}), 1.4(\mathrm{~s}, 9 \mathrm{H}), 2.15(\mathrm{~b}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~m}$, $1 \mathrm{H}), 2.95(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.9(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{bd}$, $1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 7.2(\mathrm{~m}, 5 \mathrm{H})$	$20.0,22.6,28.7,37.6,38.7,39.9,59.6$, $69.3,79.3,118.9,126.9,128.9,129.7$, 142.1, 155.6	$\begin{aligned} & 333\left(\mathrm{M}^{+}\right), 276,216, \\ & 91,57 \end{aligned}$
206	$1.1(\mathrm{~m}, 3 \mathrm{H}), 1.4(\mathrm{~s}, 9 \mathrm{H}), 2.15(\mathrm{~b}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~m}$, $1 \mathrm{H}), 2.95(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~m}, 1 \mathrm{H}), 3.9(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{bd}$, $1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 7.2(\mathrm{~m}, 5 \mathrm{H})$	$20.0,22.6,28.7,36.9,37.9,39.1,58.9$, $66.3,79.3,118.9,126.9,128.9,129.7$, 142.1, 155.6	$\begin{aligned} & 333\left(\mathrm{M}^{+}\right), 276,216, \\ & 91,57 \end{aligned}$
21	$0.9(\mathrm{~m}, 6 \mathrm{H}), 1.1(\mathrm{~m}, 6 \mathrm{H}), 1.2-1.7(\mathrm{bm}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, $2.35(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.9$ (bd, 1H), 3.50 (t-like, $1 \mathrm{H}), 3.9(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{bd}, 1 \mathrm{H}), 5.10$ (s-like, 1H), 5.30 (s-like, 1 H)	$20.2,22.1,22.6,23.2,25.2,28.5,36.9$, 39.7, 39.1, 56.7, 56.7, 69.9, 79.3, 119.2, 142.1, 154.6	$299\left(\mathrm{M}^{+}\right), 2452,212,57$
22 a	$0.9(\mathrm{~m}, 6 \mathrm{H}), 1.1(\mathrm{~m}, 6 \mathrm{H}), 1.3(\mathrm{~m}, 1 \mathrm{H}), 1.4(\mathrm{~s}, 9 \mathrm{H}), 1.5(\mathrm{~m}$, 2 H), $2.0(\mathrm{bd}, 1 \mathrm{H}), 2.3-2.5(\mathrm{bm}, 3 \mathrm{H}), 3.8(\mathrm{~m}, 1 \mathrm{H}), 3.9(\mathrm{~m}$, 1 H), 4.6 (bd, 1 H), 5.1 (s-like, 1H), 5.3 (s-like, 1H)	$14.8,18.8,20.4,22.0,24.8,26.4,28.4$, $39.0,39.7,40.1,58.5,69.7,79.3,79.3$, 118.9, 142.3, 154.9	$299\left(\mathrm{M}^{+}\right), 2452,212,57$
22b	$0.9(\mathrm{~m}, 6 \mathrm{H}), 1.1(\mathrm{~m}, 6 \mathrm{H}), 1.3(\mathrm{~m}, 1 \mathrm{H}), 1.4(\mathrm{~s}, 9 \mathrm{H}), 1.5(\mathrm{~m}$, 2 H), 2.0 (bd, 1H), 2.3-2.5 (bm, 3H), 3.7 (m, 1H), 3.9 (m, 1 H), 4.4 (bd, 1H), 5.1 (s-like, 1H), 5.2 (s-like, 1H)	14.8, 18.8, 21.0.4, 22.8, 25.6, 26.4, 28.7, 39.0, 39.7, 40.1, 57.8, 69.7, 79.3, 79.3, 118.9, 142.3, 154.9	$299\left(\mathrm{M}^{+}\right), 2452,212,57$
23	$1.0(\mathrm{~m}, 6 \mathrm{H}), 1.2(\mathrm{~d}, 3 \mathrm{H}), 1.4(\mathrm{~s}, 9 \mathrm{H}), 2.1(\mathrm{bd}, 1 \mathrm{H}), 2.1-2.5$ $(\mathrm{m}, 3 \mathrm{H}), 3.7(\mathrm{~m}, 1 \mathrm{H}), 3.9(\mathrm{~m}, 1 \mathrm{H}), 4.8(\mathrm{bd}, 1 \mathrm{H}), 5.1$ (s-like, 1H), 5.3 (s-like, 1H)	$\begin{aligned} & 19.7,20.9,22.1,28.7,39.1,40.2,51.2,71.6, \\ & \quad 79.9,118.1,143.0,155.6 \end{aligned}$	$257\left(\mathrm{M}^{+}\right), 200,170,57$

yl-2-((trimethylsilyl)methyl)-1-hexen-4-ol (43). To a stirred solution of aldehyde $7(0.7 \mathrm{~g}, 2.8 \mathrm{mmol})$ and allylsilane $5(0.77$ g, 4.7 mmol) in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ cooled to $-60^{\circ} \mathrm{C}$ was added $\mathrm{SnCl}_{4}(0.78 \mathrm{~g}, 3 \mathrm{mmol})$. After 1 h at $-60^{\circ} \mathrm{C}$, a saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then ether $(25 \mathrm{~mL})$ were added. The mixture was warmed to rt under vigorous stirring, and the separated ethereal layer was dried. After evaporation of the solvent and column chromatography on silica gel (hexane/ethyl acetate, 4/1), four different fractions were collected. Product 43 was the compound with the higher $R_{f}(0.2$ $\mathrm{g}, 20 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\delta 0.06(\mathrm{~s}, 9 \mathrm{H}), 1,4(\mathrm{~s}, 9 \mathrm{H}), 2,1(\mathrm{~m}, 2 \mathrm{H})$, $2.3(\mathrm{~m}, 3 \mathrm{H}), 2.9(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 4.7(\mathrm{bd}$, $1 \mathrm{H}, \mathrm{NH}), 6.0(\mathrm{~s}, 1 \mathrm{H}), 7.2(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-0.10(3 \mathrm{C}), 24.2$ (3C), 37.0, 37.9, 41.0, 59.0, 70.4, 78.1, 126.2 (2C), 127.2, 129.6 (2C), 129.7, 142.1, 148.0, 154.6. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{ClNO}_{3}-$ Si: C, 61.21; H, 8.32 ; N, 3.40; $\mathbf{O}, 11.65$; Si, $6.82 ; \mathrm{Cl}, 8.60$. Found: C, 61.78; H, 8.44; N, 3.54 .
(4S,5S)-5-((tert-Butoxycarbonyl)amino)-1-chloro-7-meth-yl-2-((trimethylsilyl)ethyl)-1-octen-4-ol (44): ${ }^{1} \mathrm{H}$ NMR δ 0.06 ($\mathrm{s}, 9 \mathrm{H}$), 0.9 (d-like, 6H), $1.3-1.7$ ($\mathrm{m}, 3 \mathrm{H}$), $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.9$ (bd, $1 \mathrm{H}, \mathrm{OH}$), $2.1(\mathrm{~m}, 2 \mathrm{H}), 2.2(\mathrm{~m}, 2 \mathrm{H}), 3.7(\mathrm{~m}, 2 \mathrm{H}), 4.7$ (bd, $1 \mathrm{H}, \mathrm{NH}), 5.8(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-0.10$ (3C), 22.1, 23.2, 24.8 (3C), 26.4, 38.2, $39.1,40.1,54.4,73.1,78.6,127.7,148.3,154.6$ Anal. Caled for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{ClNO}_{3} \mathrm{Si}: \mathrm{C}, 57.19 ; \mathrm{H}, 9.60 ; \mathrm{N}, 3.71 ; \mathrm{O}$, $12.70 ; \mathrm{Si}, 7.43$; Cl, 9.38 . Found: C, 56.98 ; H, 9.49 ; N, 3.66 .

Transformation of Allylsilane 43 into Product 12.

Product 43 ($0.20 \mathrm{~g}, 0.48 \mathrm{mmol}$) was dissolved in dry THF (5 mL), and TBAF ($0.13 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added. The mixture stirred for 2 h at room temperature, the solvent was evaporated, and the product was isolated by column chromatography on silica gel (hexane/ethyl acetate, $1 / 1$). The product obtained from this column ($0.10 \mathrm{~g}, 60 \%$ yield) was identical with the product obtained from 7 and allylsilane 5.
(4S,5S)-4-Benzyl-3-(tert-butoxycarbonyl)-5-(2-(chloromethyl)-3-propenyl)-2,2-dimethyl-1,3-oxazolidine (45). A solution of amino alcohol derivative $3(0.76 \mathrm{~g}$, 2.2 mmol) and p-toluenesulfonic acid (16 mg) in 2,2 -dimethoxyethane (3 mL) was stirred for 46 h at rt . Ether (10 mL) was added, and the organic layer was washed with $10 \% \mathrm{NaHCO}_{3}$ and dried. After evaporation of the solvent, column chromatography on silica gel (hexane/ethyl acetate, 6/1) gave product $45\left(0.68 \mathrm{~g}, 84 \%\right.$ yield) as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.58$ $(\mathrm{s}, 6 \mathrm{H}), 2.1(\mathrm{bm}, 1 \mathrm{H}), 2.2(\mathrm{~m}, 1 \mathrm{H}), 2.7(\mathrm{bm}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H})$, $3.8(\mathrm{~m}, 3 \mathrm{H}), 4.05$ (m, collapsing to a d upon strong irradiation at $2.5 \mathrm{ppm}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.6(\mathrm{~m}, 1 \mathrm{H}), 5.0(\mathrm{~m}, 1 \mathrm{H}), 7.2(\mathrm{~m}$, 5 H); ${ }^{13} \mathrm{C}$ NMR $\delta 24.4,27.5,29.0,38.4,38.6,48.4,48.8,63.5$, 80.5, 92.5, 117.5, 127.1, 130,0, 130,2, 138.1, 141.9, 153.2; MS $m / z 379\left(\mathrm{M}^{+}, 4\right), 290(15), 288$ (30), 232 (25), 190 (10), 188 (65), 57 (100). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Cl}: \mathrm{C}, 53.39 ; \mathrm{H}, 7.96 ; \mathrm{N}$, 3.96; O, 12.63; Cl, 9.33. Found: C, 63.89; H, 7.87; N, 3.76.
(4S,5S)-4-Benzyl-3-(tert-butoxycarbonyl)-5-(2-iodo methyl)-3-propenyl)-2,2-dimethyl-1,3-oxazolidine (46). A mixture of product $45(0.5 \mathrm{~g}, 3.2 \mathrm{mmol})$ and anhyd $\mathrm{NaI}(0.66$ $\mathrm{g}, 3.2 \mathrm{mmol}$) in acetone (3 mL) was stirred in the dark for 12 h. Ether (20 ml) was added, the mixture was filtered through Celite, and the residue was washed several times with ether. The filtrate was concentrated, ether was added, and the mixture was filtered through a small sintered-glass funnel. The solvent was evaporated to give crude 46 as a yellow oil ($0.55 \mathrm{~g}, 88 \%$ yield), which could be purified by column chromatography on silica gel (hexane/ethyl acetate, 10/1): ${ }^{1} \mathrm{H}$ NMR $\delta 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}), 2.2(\mathrm{bm}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H})$, $2.6(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}$, $1 \mathrm{H}), 4.76(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 7.2(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.0$, $18.7,24.7,29.0,39.5,39.4,48.4,49.9,80.5,98.6,116.7,127.2$, $129.9,130.1,138.1,143.3,158.6 ; \mathrm{MS} \mathrm{m} / \mathrm{z} 471\left(\mathrm{M}^{+}, 10\right), 400$ (15), 324 (25), 280 (30), 91 (60), 57 (100). Anal. Caled for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{I}: \mathrm{C}, 53.51 ; \mathrm{H}, 6.41 ; \mathrm{N}, 2.97$; O, 10.18; I, 26.92. Found: C, 53.01; 6.51; N, 2.89 .
(4S,5S)-4-Benzyl-3-(tert-butoxycarbonyl)-5-(2-((dieth-ylphosphono)methyl)-3-propenyl)-2,2-dimethyl-1,3-oxazolidine (47). Product 46 ($0.55 \mathrm{~g}, 1.17 \mathrm{mmol}$) and triethyl phosphite ($0.235 \mathrm{~g}, 1.52 \mathrm{mmol}$) were heated at $140^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled, and the flask was connected to a vacuum pump and maintained for 6 h under vacuum (0.1 mmHg). The crude material was purified by short-path column chromatography (hexane/ethyl acetate, 6/1) to give 47 $(0.54 \mathrm{~g}, 96 \%):{ }^{1} \mathrm{H}$ NMR $\delta 1.26(\mathrm{t}, 6 \mathrm{H}), 1.53(\mathrm{~s}, 15 \mathrm{H}), 2.0-2.7$ $(\mathrm{m}, 4 \mathrm{H}), 3.2(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{bs}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 6 \mathrm{H}), 4.75(\mathrm{bs}, 1 \mathrm{H})$, $4.9(\mathrm{bs}, 1 \mathrm{H}), 7.2(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 16.9,17.2,27.6,27.9$, $28.9,35.2,37.5,40.0,42.0,62.2,62.5,63.5,80.4,95.0,117.8$, 127.0, 128.9, 129.9, 136.9, 138.6, 152.6; MS m/z $481\left(\mathrm{M}^{+}, 5\right)$, 395 (21), 280 (20), 91 (60), 57 (100). Anal. Caled for $\mathrm{C}_{25} \mathrm{H}_{40^{-}}$ $\mathrm{NO}_{6} \mathrm{P}: \mathrm{C}, 62.35 ; \mathrm{H}, 8.37$; N, 2.91; O, 19.93; P, 6.43. Found: C, 62.65; H, 8.45; N, 2.89 .
(4S,5S)-4-Benzyl-3-(tert-butoxycarbonnyl)-5-(2-formyl-3-propenyl)-2,2-dimethyl-1,3-oxazolidine (48). Product 45 ($0.22 \mathrm{~g}, 0.6 \mathrm{mmol}$) in toluene (1 mL) was heated at $110^{\circ} \mathrm{C}$ for 20 h in the presence of $\mathrm{NaHCO}_{3}(100 \mathrm{mg}, 1.2 \mathrm{mmol})$ and DMSO (5 mL). The mixture was cooled to rt , and water (2 mL) and diethyl ether (5 mL) were added. The organic layer was separated, washed with $10 \% \mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and brine (10 mL), and dried. After evaporation of the solvent, short path column chromatography on silica gel (hexane/ethyl acetate, $4 / 1$) gave product 48 ($0.175 \mathrm{~g}, 82 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\delta 1.53$ (s, $15 \mathrm{H}), 2.4(\mathrm{~m}, 1 \mathrm{H}), 2.8(\mathrm{~m}, 2 \mathrm{H}), 3.2(\mathrm{~m}, 1 \mathrm{H}), 3.6(\mathrm{~m}, 1 \mathrm{H}), 4.1$ $(\mathrm{m}, 1 \mathrm{H}), 5.9(\mathrm{~s}-\mathrm{like}, 1 \mathrm{H}), 6.1$ (s-like, 1 H$) 7.3(\mathrm{~m}, 5 \mathrm{H}), 9.3(\mathrm{~s}$, $1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 26.5,26.3,27.4,37.6,42.5 ; 63.4 ; 63.9,79.4$, $90.1,126.4,129.0,129.4,129.9,136.0,145.5,193.3$; MS m / z 359 ($\mathrm{M}^{+}, 10$), 302 (15), 256 (10), 91 (80), 57 (100). An elemental analysis was determined on the phenylhydrazone of aldehyde

48 (mp 104-105 ${ }^{\circ} \mathrm{C}$). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 72.13$; H, 7.85; N, 9.35 ; O, 10.68. Found: C, $72.10 ; \mathrm{H}, 7.88$; N, 9.39 .
(4S,5S)-4-Benzyl-3-(tert-butoxycarbonyl)-2,2-dimethyl-5-(2-methylene-4-phenyl-4(E)-butenyl)-1,3-oxazolidine (50). NaH (22.7 mg of a 60% dispersion in mineral oil, 0.49 mmol), previously washed with ether, and benzyl diethyl phosphite ($0.11 \mathrm{~g}, 0.49 \mathrm{mmol}$) in ether (1 mL) were reluxed for 20 min . After mixture was cooled to rt, aldehyde 48 (0.17 $\mathrm{g}, 0.49 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added. After 2 h of stirring at $r t$, the mixture was hydrolyzed with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was washed with brine and dried. After evaporation of the solvent, column chromatography on silica gel (hexane/ethyl acetate, $5 / 1$) gave product 50 ($0.15 \mathrm{~g}, 73 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\delta 1.5(\mathrm{~s}, 15 \mathrm{H}), 2.3$ (AB part of an $A B X$ system, 4 lines, 1 H), 2.6 (AB part of an ABX system, 4 lines, 1 H$), 2.8(\mathrm{~m}, 1 \mathrm{H}), 3.2(\mathrm{~m}, 1 \mathrm{H}), 4.0(\mathrm{~m}, 1 \mathrm{H}), 4.2(\mathrm{~m}, 1 \mathrm{H})$, $5.0(\mathrm{~m}, 2 \mathrm{H}), 6.3(\mathrm{~m}$, collapsing to a doublet upon irradiation at $5.0 \mathrm{ppm}, J=16 \mathrm{~Hz}), 6.6(\mathrm{~m}$, collapsing to a doublet upon irradiation at $5.0 \mathrm{ppm}, J=16 \mathrm{~Hz}), 7.1-7.3(\mathrm{~m}, 10 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 26.1,26.3,27.0,37.6,42.6,44.6,63.4,90.7,119.3,126.0$, 126.7, 129.4 (2C), 129.7, 129.9, 136.0, 140.0, 146.5; MS m/z $433\left(\mathrm{M}^{+}, 10\right), 376$ (15) 332 (25), $91(100), 77$ (80), 57 (60). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{3}$: C, 77.56; H, 8.14; N, 3.23; $0,11.07$. Found: C: 77.39; H, 8.10; N, 3.20.
(4S,5S)-4-Benzyl-3-(tert-butoxycarbonyl)-2,2-dimethyl-5-(2(S)-(hydroxymethyl)-4-phenyl-4(E)-butenyl)-1,3-oxazolidine (51a). In a vial sealed with a rubber septum and cooled to $0^{\circ} \mathrm{C}$, borane-methyl sulfide $(0.2 \mathrm{~mL}$ of a 2 M solution in THF, 0.4 mmol) was mixed with cyclohexene ($64 \mathrm{mg}, 0.8$ mmol). After 3 h of stirring, the mixture was added to a flask containing diene $50(0.150 \mathrm{~g}, 0.36 \mathrm{mmol})$ in dry THF (1 mL) cooled to $-30^{\circ} \mathrm{C}$. The mixture was warmed to rt and stirred overnight. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, and ETOH $(0.5 \mathrm{~mL}), \mathrm{NaOH} 3 \mathrm{M}(0.9 \mathrm{~mL})$, and hydrogen peroxide 30% $(0.66 \mathrm{~mL})$ were added sequentially. The mixture was warmed to rt and stirred for 4 h . After dilution with NaOH 1 M (3 mL) the mixture was extracted with ether (three portions of 5 mL), and the organic layer was washed with NaOH , water, and brine. After drying and evaporation of the solvent, shortpath column chromatography (hexane/ethyl acetate $1.5 / 1$) gave product $51 \mathrm{a}\left(0.110 \mathrm{~g}, 71 \%\right.$ yield) as single diastereoisomer: ${ }^{1} \mathrm{H}$ NMR $\delta 1.5(\mathrm{~s}, 15 \mathrm{H}), 1.9-2.5(\mathrm{~m}, 4 \mathrm{H}), 2.9(\mathrm{~m}, 1 \mathrm{H}), 3.2(\mathrm{~m}, 1 \mathrm{H})$, $3.9-4.1(\mathrm{~m}, 3 \mathrm{H}), 4.3(\mathrm{~m}, 1 \mathrm{H}), 5.8(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 6.3(\mathrm{~m}$, $1 \mathrm{H}), 7.1-7.3(\mathrm{~m}, 10 \mathrm{H})$; MS $m / z 451\left(\mathrm{M}^{+}, 6\right) 394$ (15), 376 (45), 350 (30), 91 (100), 77 (80), 57 (75). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{37}$ $\mathrm{NO}_{4}: \mathrm{C}, 74.47$; H, 8.26 ; N, 3.10; O, 14.17. Found: C, 74.39; H, 8.25; N, 3.07.
(4S,5S)-4-Benzyl-3-(tert-butoxycarbonyl)-2,2-dimethyl-5-(2(R)-(hydroxymethyl)-4-phenyl-4(E)butenyl)-1,3-oxazolidine (51b). From the above chromatography was isolated 51 b ($11 \mathrm{mg}, 7 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\delta 1.5$ (s, 15 H), 1.9-2.5 $(\mathrm{m}, 4 \mathrm{H}), 2.9(\mathrm{~m}, 1 \mathrm{H}), 3.2(\mathrm{~m}, 1 \mathrm{H}), 3.9-4.1(\mathrm{~m}, 2 \mathrm{H}), 4.4(\mathrm{~m}, 1 \mathrm{H})$, $4.7(\mathrm{~m}, 1 \mathrm{H}), 5.7(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 6.3(\mathrm{~m}, 1 \mathrm{H}), 7.1-7.3(\mathrm{~m}$, 10 H); MS m/z 451 ($\mathrm{M}^{+}, 5$) 394 (25), 376 (35), 350 (20), 91 (100), 77 (55), 57 (80).
(4S,5S)-4-Benzyl-3-(tert-butoxycarbonyl)-2,2-dimethyl-5-(2(S)-carboxy-4-phenyl-4(E)-butenyl)-1,3-oxaozolidine (53). Oxalyl chloride ($36 \mathrm{mg}, 0.29 \mathrm{mmol}, 0.5 \mathrm{~mL}$) and DMSO ($46 \mathrm{mg}, 0.6 \mathrm{mmol}$) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-60^{\circ} \mathrm{C}$ for 20 min . Alcohol $51 \mathrm{a}(0.1 \mathrm{~g}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added, and the mixture was stirred for 20 min . Triethylamine ($60 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added, and the mixture was warmed to rt. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and then $\mathrm{HCl} 1 \mathrm{M}(2 \mathrm{~mL})$ were added. The organic layer was wahed with brine, and after it was dried the solvent was evaporated. The crude product was dissolved in 2 -methyl-2-propanol (2 mL) and 2 -methylbutene $(1 \mathrm{~mL})$, and then a solution of $\mathrm{NaClO}_{2}(0.17 \mathrm{~g}, 1.9 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(0.174 \mathrm{~g}, 1,3 \mathrm{mmol})$ in water (3 mL) were added. After 4 h of stirring at $40^{\circ} \mathrm{C}$, the volatile components of the mixture were removed under vacuum, $\mathrm{NaHCO}_{3}(0.4 \mathrm{~g})$ was added to the aqueous residue, and the solution was washed with hexane. The aqueous phase was acidified to pH 3 with HCl 3 M and extracted with ethyl acetate (two portions of 5 mL). After drying and evaporation of the solvent, product 53 was obtained as a solid sufficiently pure to be used in the next step ($64 \mathrm{mg}, 63 \%$ yield). The analytical sample was crystallied
from benzene: $\mathrm{mp} 76-78^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.5(\mathrm{~s}, 15 \mathrm{H}), 1.9-2.5$ $(\mathrm{m}, 3 \mathrm{H}), 2.9(\mathrm{~m}, 1 \mathrm{H}), 3.2(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~m}, 1 \mathrm{H}), 4.3(\mathrm{~m}, 1 \mathrm{H}), 5.7$ (d, $J=17 \mathrm{~Hz}, 1 \mathrm{H}), 6.2$ (m, 1H), $7.1-7.3$ (m, 10H), 10.6 (bs, $1 \mathrm{H}): \mathrm{MS} m / z 465\left(\mathrm{M}^{+} ; 12\right), 435(18), 390(60), 91$ (100). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{5}: \mathrm{C}, 72.23 ; \mathrm{H}, 7.58 ; \mathrm{N}, 3.01 ; \mathrm{O}, 17.18$. Found: C, 72,39; H, 7.63, N, 3.11.
(3S,5S,6S)-6-((tert-butoxycarbonyl)amino)-3-carboxy-1,7-diphenyl-1 (E)-hepten-5-ol (54). $\mathrm{BF}_{3} \cdot \mathrm{MeCOOH}(0.2 \mathrm{~mL})$ and acid 53 ($55 \mathrm{mg}, 0.11 \mathrm{mmol}$) were stirred in $\mathrm{MeOH}(1 \mathrm{~mL})$ at rt for 5 h . Solid $\mathrm{NaHCO}_{3}(0.1 \mathrm{~g})$ was added, and the mixture was stirred for 30 min . After filtration through Celite and evaporation of the solvent, column chromatography on silica gel (hexane/ethyl acetate, 2/1) gave product $\mathbf{5 3}$ ($40 \mathrm{mg}, 86 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\delta 1.5(\mathrm{~s}, 9 \mathrm{H}), 1.9-2.5(\mathrm{~m}, 4 \mathrm{H}), 2.9(\mathrm{~m}, 1 \mathrm{H})$, $3.2(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~m}, 1 \mathrm{H}), 4.3(\mathrm{~m}, 1 \mathrm{H}), 5.4(\mathrm{~m}, 1 \mathrm{H}), 5.7(\mathrm{~d}, \mathrm{~J}=$ $17 \mathrm{~Hz}, 1 \mathrm{H}), 6.2(\mathrm{~m}, 1 \mathrm{H}), 7.1-7.3(\mathrm{~m}, 10 \mathrm{H}), 9.6(\mathrm{bs}, 1 \mathrm{H}) ; \mathrm{MS}$ $\mathrm{m} / \mathrm{z} 407$ ($\mathrm{M}^{+}-18$), $350(20), 91$ (100), 57 (80). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{5}: \mathrm{C}, 70.57 ; \mathrm{H}, 7.34 ; \mathrm{N}, 3.29 ; \mathrm{O}, 18.80$. Found C, 70.61; H, 7.39; N, 3.36.

3(S)-2(E)-Phenylethenyl)-5(S)-(1-((tert-butoxycar-bonyl)amino)-2-phenethyl)tetrahydrofuran-2-one (55a). Product $54(40 \mathrm{mg}, 0.09 \mathrm{mmol})$ and trifluoromethanesulfonic anhydride ($10 \mu \mathrm{~L}$) were stirred at $-20^{\circ} \mathrm{C}$ for 2 h . Ether was added, and the mixture was washed with HCl 1 N . The organic layer was dried, and the solvent was evaporated to give product $55 a$ as a solid, which was crystallized from hexane: $\mathrm{mp} 81-83^{\circ} \mathrm{C}$ ($31 \mathrm{mg}, 84 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\delta 1.5$ (s, $9 \mathrm{H}), 1.9-2.3(\mathrm{~m}, 2 \mathrm{H}), 2.9(\mathrm{~m}, 1 \mathrm{H}), 3.2(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~m}, 1 \mathrm{H})$, $4.8(\mathrm{~m}, 1 \mathrm{H}), 5.4(\mathrm{~m}, 1 \mathrm{H}), 5.7(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 6.2(\mathrm{~m}, 1 \mathrm{H})$, $7.1-7.3(\mathrm{~m}, 10 \mathrm{H}) ;$ MS $\mathrm{m} / \mathrm{z} 407\left(\mathrm{M}^{+}, 10\right), 350(25), 91(40), 57$ (100). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{29}$ $\mathrm{NO}_{4}: \mathrm{C}, 73.69 ; \mathrm{H}, 7.17$; N, 3.44; O, 15.70. Found: C, 73.73; H, 7.20; N, 3.49.

3(R)-(2(E)-Phenylethenyl)-5(S)-(1-((tert-butoxycar-bonyl)amino)-2-phenethyl)tetrahydrofuran-2-one (55b): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.5(\mathrm{~s}, 9 \mathrm{H}), 1.9-2.3$ (m, $2 \mathrm{H}), 2.8(\mathrm{~m}, 1 \mathrm{H}), 3.1(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~m}, 1 \mathrm{H}), 4.7(\mathrm{~m}, 1 \mathrm{H}), 5.4(\mathrm{~m}$, $1 \mathrm{H}), 5.7(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 6.3(\mathrm{~m}, 1 \mathrm{H}), 7.1-7.3(\mathrm{~m}, 10 \mathrm{H})$; MS m/z $407\left(\mathrm{M}^{+}, 5\right), 350(20), 91(65), 57(100)$.
$1(S)-((5(S)-(($ tert-Butoxycarbonyl)amino)-4(S)-hydroxy-6-phenyl-2(S)-(2-phenylethenyl)esanoyl)amino)-2(R)-hy-
droxyindan (3). A solution of acid 53 a (55 mg 0.11 mmol), $1(S)$-amino- $2(R)$-hydroxyindan ${ }^{18}(56)(17 \mathrm{mg}, 0.12 \mathrm{mmol})$, and diisopropylethylamine ($20 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$) in dichloromethane (1 mL) was cooled to $0^{\circ} \mathrm{C}$, and diethyl phosphorocyanidate (20 $\mu \mathrm{L}, 0.13 \mathrm{mmol}$) was added. The reaction mixture was stirred at rt overnight, and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ were added. The organic layer was dried, and the solvent was evaporated to give crude product 56. This product was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$, and $\mathrm{BF}_{3} \mathrm{CH}_{3} \mathrm{COOH}$ $(10 \mu \mathrm{~L})$ was added. The mixture was stirred 3 h at rt. Ether $(5 \mathrm{~mL})$ and then a saturated solution of $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ were added. The organic layer was washed with brine and dried. Evaporation of the solvent and column chromatography on silica gel (ethyl acetate/hexane, 5/1) gave product 3 as a white solid: mp $176-178{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.4(\mathrm{~s}, 9 \mathrm{H}), 1.8(\mathrm{~m}, 2 \mathrm{H})$, $2.02(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.4(\mathrm{~m}, 1 \mathrm{H}), 2.6(\mathrm{~m}, 1 \mathrm{H}), 2.7(\mathrm{~m}, 1 \mathrm{H})$, $2.8-2.9(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{bs}, 1 \mathrm{H}), 4.4(\mathrm{~m}, 1 \mathrm{H}), 4.9(\mathrm{~d}$, $J=10 \mathrm{~Hz}, 1 \mathrm{H}), 5.4(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=7,17 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ (d, $J=17 \mathrm{~Hz}, 1 \mathrm{H}), 6.7(\mathrm{~b}, 1 \mathrm{H}), 7.1-7.4(\mathrm{~m}, 14 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 556$ $\left(\mathrm{M}^{+}, 5\right), 91(15), 71$ (40), 57 (100). Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, 73.36 ; \mathrm{H}, 7.24 ; \mathrm{N}, 5.03$. Found: C, $73.46 ; \mathrm{H}$, 7.22; N, 5.10.

Acknowledgment. This work was financially supported by MURST (Rome, Fondi 60\%). The authors thank B. Innocenti, C. Faggi, and S. Papaleo (University of Florence) for performing the microanalysis, the HPLC analysis, and the mass spectra, and Menarini Farmaceutici (Florence) for the kind determination of the HIV-1 protease inhibition properties of compound 3.

Supplementary Material Available: The general procedures for the preparation of oxazolidinones 24-35 and for the preparation of the MTPA esters of alcohols 12, 15, 16a,b, and 20a,b; a listing of the diagnostic ${ }^{1} \mathrm{H}$ NMR signals of products $24-356$ and (R)-MTPA- and (S)-MTPA-36-4a; and analytical data for compounds 12-35 (5 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: ${ }^{\dagger}$ Università di Firenze.
 \ddagger Centre de Neurochimie.

 * Abstract published in Advance ACS Abstracts, May 15, 1994.
 (1) Mitsuya, H.; Broder, S. Nature 1987, 325, 773. Dalgleish, A.; Beverley, P. C. L.; Clapham, M.R.; Crawford, D. H.; Greaves, M. F.; Weiss, R. A. Nature 1984, 312, 763.
 (2) Johnston, M. I.; Hoth, D. F. Science 1993, 260, 1286.
 (3) Huff, J. R. J. Med. Chem. 1991, 34, 2305. Martin, J. A. Antiviral Res. 1992, $17,265$.
 (4) Ghosh, a.K.; McLee, S. P.; Thompson, W. J. J. Org. Chem. 1991, 56, 6500. Rich, D. H.; Vara Prasad, J. V. N.; Sun, C.-Q.; Green, J.; Mueller, R.; Houseman, K.; MacKemzie, D.; Malkovsky, M. J. Med. Chem. 1992, 35, 3803. Tucker, T. J.; Luma, W. C.; Payne, L. S.; Wai, J. M.; de Solms, S. J.; Giulianai, E. A.; Darke, P. L.; Heimbach, J. C.; Zugay, J. A.; Schleif, W. A.; Quintero, J. C.; Emini, E. A.; Huff, J. R.; Anderson, P. S. J. Med. Chem. 1992, 35, 2525. Thaisrivongs, S.; Turner, S. R.; Strombach, J. W.; TenBrink, R. E.; Tarpley, W. G.; McQuade, T. J.; Heinrikson, R. L.; Tomasselli, A. G.; Hui, J. O.; Howe, W. J. J. Med. Chem. 1993, 36, 941.

[^1]: (5) D'Aniello, F.; Taddei, M. J. Org. Chem. 1992, 57, 5247.
 (6) Young, S. D.; Payne, C. S.; Thompson, W. J.; Gaffin, N.; Lyle, T. A.; Britcher, S. F.; Graham, S. L.; Schultz, T. H.; Deana, A. A.; Darice, P. L.; Zugay, J.; Schleif, W. A.; Quintero, J. C.; Emini, E. A.; Anderson, P. S.; Huff, J. R. J. Med. Chem. 1992, 35, 1702.
 (7) Fleming, I.; Dunogues, J.; Smithers, R. Org. React. 1989, 37, 57. Nativi, C.; Ricci, A.; Taddei, M. In Frontiers of Organosilicon Chemistry; Bassindale, A. R., Gaspar, P. P., Eds.; The Royal Society of Chemistry: Letchworth, 1991; p 332.
 (8) D'Aniello, F.; Gehanne, S.; Taddei, M. Tetrahedron Lett. 1992, 33, 5621 .
 (9) Vara Prasad, J. V. N.; Rich, D. H. Tetrahedron Lett. 1990, 31, 1803. Vara Prasad, J. V. N.; Tetrahedron Lett. 1991, 32, 5857. Reetz, M. T.; Drewes, M. W.; Schmitz, A. Angew. Chem., Int. Ed. Engl. 1987, 26, 1141 .
 (10) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1991, 30, 1531.

[^2]: (11) Bunelle, W. H.; Narajan, B. A. Org. Synth. 1890, 69, 89.

[^3]: (12) Nishigaishi, Y.; Takuwa, A.; Jodai, A. Tetrahedron Lett. 1991, 32, 2383.
 (13) Foglia, T. A.; Swern, D. J. J. Org. Chem. 1969, 34, 1680. Futukawa, S.; Inui, T.; Shiba, T.; Bull. Chem. Soc. Jpn. 1973, 46, 3308. Dufour, M.-N.; Jouin, P.; Pancet, J.; Pantaloni, A.; Castro, B. J. Chem. Soc., Perkin Trans. 1 1986, 1895.

[^4]: (14) Ohtani, I.; Kusuni, T. P.; Koshman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.

[^5]: (15) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021.

[^6]: (16) Kornblum, N.; Poewers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, M. O.; Levand, O.; Wearer, W. M. J. Am. Chem. Soc. 1957, 79, 6562.
 (17) Saari, W. S.; Fisher, T. E. Synthesis 1990, 453.

[^7]: (18) Hassner, A.; Carber, M. E.; Heathcock, C. J. Org. Chem. 1967,

